
http://intrbiz.comchris@intrbiz.com

PostgreSQL for IoT

Chris Ellis - @intrbiz

The Internet Of Strange Things

PGCONF.EU 2019 - Milan

http://intrbiz.comchris@intrbiz.com

Hello!

● I’m Chris
○ IT jack of all trades, studied Electronic Engineering

● Been using PostgreSQL for about 15 years
● Very much into Open Source

○ Started Bergamot Monitoring - open distributed monitoring

● Worked on various PostgreSQL systems
○ Connected TV Set top boxes
○ Smart energy meter analytics
○ IoT Kanban Board
○ IoT CHP Engines
○ Mixes of OLTP and OLAP workloads
○ Scaled PostgreSQL in various ways for various situations

http://intrbiz.comchris@intrbiz.com

IoT

http://intrbiz.comchris@intrbiz.com

One size fits all?

http://intrbiz.comchris@intrbiz.com

One size fits all?

http://intrbiz.comchris@intrbiz.com

Time series databases

● Lots of specialised time series datastores
○ Single use case solutions
○ Have their own querying languages
○ Limited data types

http://intrbiz.comchris@intrbiz.com

Why PostgreSQL?

● The same reason I constantly go back to PostgreSQL
○ We don’t call it the `world’s most advanced Open Source

relational database` without just cause
○ It’s flexible
○ It’s extensible
○ It puts up with you
○ It cares

● IoT is not a simple, one size fits all problem
○ It’s not just time series data
○ I find single solution data stores, a bit, pointless

http://intrbiz.comchris@intrbiz.com

Why PostgreSQL?

● PostgreSQL makes it easy to combine your time series data with other data
○ You know: a join!

● Find me the average energy consumption of Shropshire?
● Find me the average energy consumption for 4 bed houses during the

summer?
● Find me the average, min, max energy consumption for 4 bed houses during

summer in Shropshire for a half hourly period?
● What is the average energy consumption for houses within x miles of my

house?

http://intrbiz.comchris@intrbiz.com

"Where you must go; where the path of the One ends."

http://intrbiz.comchris@intrbiz.com

"Where you must go; where the path of the One ends."

● The source of your data is usually a small embedded system
○ Can have very variable capabilities

■ From not enough to far to much

● ESP-32
○ Dual core 32bit @ upto 240MHz
○ 520KiB SRAM (D&I)
○ Typically 4MiB SPI Flash ROM
○ WiFi, TCP/IP stack
○ Runs FreeRTOS

http://intrbiz.comchris@intrbiz.com

"Where you must go; where the path of the One ends."
● Some devices can be pretty

powerful with good RAM and
storage

● Smart Home Hub
○ Single Core 1GHz ARM Cortex-A8
○ 512 MiB RAM
○ 4 GiB Flash eMMC Storage
○ WiFi + Ethernet
○ Zigbee
○ Runs Linux

http://intrbiz.comchris@intrbiz.com

"Where you must go; where the path of the One ends."

● Other devices can be even stranger
○ Whole string of controllers and modules
○ Fairly busy control system, connectivity is not a priority

● Industrial Control
○ Single Core 200MHz ARM7
○ 128 MiB RAM
○ >8GB SD Card
○ Ethernet
○ Lots of CAN
○ Runs a RTOS, hard real time
○ Doing other very important things

http://intrbiz.comchris@intrbiz.com

Collecting Data

http://intrbiz.comchris@intrbiz.com

Collecting Data - Device ←→ Platform

● Probably using MQTT between device and platform
○ Seen AMQP to platform (terrible idea)

■ And some strange reinventions of TCP over UDP and DNS
○ Most likely sending binary data, especially if low end device

● Consumer devices might need to be careful of
○ Bandwidth utilisation
○ Power consumption

● Devices operating in remote environments
○ Need to be careful with battery usage

■ Eg: Gas meters must be battery powered
○ GPRS backhaul, slow, expensive during daytime

http://intrbiz.comchris@intrbiz.com

Collecting Data - Device ←→ Platform

● Be selective about how you send data
○ A lot of use cases don’t need low latency real time data feeds

■ Can switch to a fast mode when you need it
○ In the cloud you often get charged per message

■ Cheaper to send 1 big message than lots of small messages

● Business model
○ IoT products are quite often hero products, one off income (especially in consumer)
○ Yet you have recurring directly coupled costs

● Can be difficult to authenticate devices
○ TLS client auth often used, certs can be extracted and usually cover lots of devices
○ Low end devices harder to do certificates
○ Huge risk of people being able to fake data or do fun things

http://intrbiz.comchris@intrbiz.com

Storing Data

http://intrbiz.comchris@intrbiz.com

Storing Data

CREATE TABLE iot.alhex_reading (
 device_id UUID NOT NULL,
 read_at TIMESTAMP NOT NULL,
 temperature REAL,
 light REAL,
 PRIMARY KEY (device_id, read_at)
);

http://intrbiz.comchris@intrbiz.com

Storing Data - Range Types

CREATE TABLE iot.alhex_reading (
 device_id UUID NOT NULL,
 read_range TSRANGE NOT NULL,
 temperature REAL,
 light REAL,
 PRIMARY KEY (device_id, read_range)
);

http://intrbiz.comchris@intrbiz.com

Storing Data - Metadata

CREATE TABLE iot.alhex_reading (
 device_id UUID NOT NULL,
 read_range TSRANGE NOT NULL,
 temperature REAL,
 meta JSONB,
 PRIMARY KEY (device_id, read_at)
);

http://intrbiz.comchris@intrbiz.com

Storing Data - Rolling On Up

CREATE TABLE iot.daily_reading (
 meter_id UUID NOT NULL,
 read_range DATERANGE NOT NULL,
 energy BIGINT,
 energy_profile BIGINT[],
 PRIMARY KEY (device_id, read_at)
);

http://intrbiz.comchris@intrbiz.com

Storing Data - Rolling On Up

t_xmin t_xmax t_cid t_xvac t_ctid t_infomask
2

t_infomask t_hoff

4 4 4 4 6 2 2 1

24 bytes

device_id read_at temperature light

16 8 4 4

32 bytes

http://intrbiz.comchris@intrbiz.com

Loading Data

http://intrbiz.comchris@intrbiz.com

Loading Data - Batching

● Load in batches
● Don’t use autocommit
● Batching ramps up

fast:
○ Autocommit: 300 /s
○ Batch of 10: 2k2 /s
○ Batch of 50: 5k5 /s
○ Batch of 100: 6k /s
○ Batch of 300: 8k /s

● Batching gives ~ 20x
performance gain

http://intrbiz.comchris@intrbiz.com

Loading Data - Batching
connection.setAutoCommit(false);
try {
 try (PreparedStatement stmt = connection.prepareStatement("INSERT INTO")) {

for (T record : batch) {
 stmt.setString(1, record.getId().toString());
 stmt.setTimestamp(2, record.getTimestamp());
 stmt.setFloat(3, record.getTemperature());
 stmt.addBatch();

}
stmt.executeBatch();

 }
 connection.commit();
} catch (SQLException e) {

connection.rollback();
} finally {

connection.setAutoCommit(true);
}

http://intrbiz.comchris@intrbiz.com

Loading Data - Comparing Loading Methods

● Batched inserts offer
a big gain over single
insert statements

● Copy has a huge
speed up over even
batched inserts with
the same batch size

● Checkpointing is
useful to keep latency
consistent

http://intrbiz.comchris@intrbiz.com

Loading Data - Copy Performance

● Copy starts fast and
ramps up quickly with
batch size

●

http://intrbiz.comchris@intrbiz.com

Loading Data - ON CONFLICT

● Use ON CONFLICT
● Your data will be crap

○ Duplicate PKs
○ Out of order

● Nothing worse than having
your batch abort

○ Need to deal with savepoints,
application buffers

○ Gets rather complex

http://intrbiz.comchris@intrbiz.com

Loading Data - Unlogged

● UNLOGGED tables
will ramp up faster
than LOGGED tables
with respect to batch
sizes

● Little improvement
over optimized batch
loading

http://intrbiz.comchris@intrbiz.com

Loading Data - Parallel

● Loading in parallel will
let you push more in

● Roughly linear until
you hit CPU or
Storage limits

http://intrbiz.comchris@intrbiz.com

Loading Data - Never Sleeping

● IoT data is often constant, never sleeping, never lets up
○ Also insert / append only doesn’t trigger AutoVac, your tables don’t get ANALYSEd

● This can really stresses replication
○ Regardless of sync vs async replication
○ You need to ensure that your replicas can keep up with the constant torrent of data

■ Replication replay is single threaded, this can have a huge impact on lagging

● You don’t really get your nightly maintenance window
○ Need to be careful with backups
○ Maintenance jobs might need more planning

http://intrbiz.comchris@intrbiz.com

Loading Data - When Thing Go Wrong

http://intrbiz.comchris@intrbiz.com

Loading Data - When Thing Go Wrong

● Devices should skew times and back off when things go wrong
○ Can be very easy to trigger congestive collapse

■ Only needs a minor trigger
○ Don’t forget this is more about comms, rather than sampling time

● Your devices should still do sensible things without your platform
● Your data loading system should throttle inserts

○ Don’t want impact of devices taking your DB out, and thus most of the platform
○ It’s probably better to drop data or buffer more than fall flat on your face

Have head room in your data loading!

http://intrbiz.comchris@intrbiz.com

Managing Data

http://intrbiz.comchris@intrbiz.com

Managing Data - Partitioning

M
O

N
D

A
Y TU

ESD
AY

W
ED

N
ESD

AY

TH
U

R
SD

AY

http://intrbiz.comchris@intrbiz.com

Managing Data - Partitioning

CREATE TABLE iot.alhex_reading (
 device_id UUID NOT NULL,
 read_at TIMESTAMP NOT NULL,
 temperature REAL,
 light REAL,
 PRIMARY KEY (device_id, read_at)
) PARTITION BY RANGE (read_at);

http://intrbiz.comchris@intrbiz.com

Managing Data - Partitioning

CREATE TABLE iot.alhex_reading_201910
 PARTITION OF iot.alhex_reading
 FOR VALUES FROM ('2019-10-01') TO ('2019-11-01');

...

CREATE TABLE iot.alhex_reading_202002
 PARTITION OF iot.alhex_reading
 FOR VALUES FROM ('2020-02-01') TO ('2020-03-01');

http://intrbiz.comchris@intrbiz.com

Managing Data - Partition Loading Performance

● Insert into partition
parent table

● Inserts need to be
directed to the correct
partition

● This has a slight
performance drop

http://intrbiz.comchris@intrbiz.com

Managing Data - Partition Retention

ALTER TABLE iot.alhex_reading_201910
 DETACH PARTITION iot.alhex_reading;
-- Archive old partition

COPY iot.alhex_reading_201910
 TO ‘archive/alhex_reading_201910’;

DROP TABLE iot.alhex_reading_201910;

http://intrbiz.comchris@intrbiz.com

Managing Data - Tablespaces

CREATE TABLESPACE archive
 LOCATION ‘/data/slow/archive’;

-- Move old data to our archive tablespace

ALTER TABLE iot.alhex_reading_201910
 SET TABLESPACE TO archive;

http://intrbiz.comchris@intrbiz.com

Managing Data - BRIN

http://intrbiz.comchris@intrbiz.com

Managing Data - BRIN

CREATE TABLE iot.alhex_reading_history (
 device_id UUID NOT NULL,
 read_at TIMESTAMP NOT NULL,
 temperature REAL,
 light REAL
);

CREATE INDEX alhex_reading_history_read_at_idx
 ON iot.alhex_reading_brin USING BRIN(read_at);

http://intrbiz.comchris@intrbiz.com

Managing Data - BRIN

-- Relation size: 1321 MB, 23,000,000 rows

SELECT * FROM iot.alhex_reading_history
WHERE device_id = 'a3e06bcf-429d-43ff-9e46-55aee2ddd86a'
AND read_at >= '2019-10-17 07:10:31'
AND read_at <= '2019-10-18 07:10:31';

-- Seq Scan: 1239 ms No Index
-- BRIN: 148 ms 80 kB Index
-- BTREE: 0.73 ms 891 MB Index

http://intrbiz.comchris@intrbiz.com

Processing Data

http://intrbiz.comchris@intrbiz.com

Processing Data - Putting Stuff Together

SELECT date_trunc(‘month’, r.day) AS month,
 avg(r.kwh), min(r.kwh), max(r.kwh)
FROM reading r
JOIN meter m ON (m.id = r.meter_id)
JOIN postcode p ON st_dwithin(m.location,
 p.location, 2000)
WHERE p.postcode = ‘SY2 6ND’
GROUP BY 1;

http://intrbiz.comchris@intrbiz.com

Processing Data - Putting Stuff Together

SELECT avg(r.kwh), min(r.kwh),
 max(r.kwh), count(*)
FROM reading_monthly r
JOIN meter m ON (m.id = r.meter_id)
JOIN property p ON (m.property_id = p.id)
WHERE p.bedrooms = 4
AND r.month BETWEEN ‘2019-01-01’ AND ‘2019-03-01’

http://intrbiz.comchris@intrbiz.com

Processing Data - Presenting Data

SELECT r.device_id, t.time, array_agg(r.read_at),
 avg(r.temperature), avg(r.light)
FROM generate_series(
 '2019-10-06 00:00:00'::TIMESTAMP,
 '2019-10-07 00:00:00'::TIMESTAMP, '10 minutes') t(time)
JOIN iot.alhex_reading r
 ON (r.device_id = '26170b53-ae8f-464e-8ca6-2faeff8a4d01'::UUID
 AND r.read_at >= t.time
 AND r.read_at < (t.time + '10 minutes'))
GROUP BY 1, 2
ORDER BY t.time;

http://intrbiz.comchris@intrbiz.com

Processing Data - Presenting Data

SELECT r.device_id, t.time, array_agg(r.read_at),
 avg(r.temperature), avg(r.light)
FROM generate_series(
 '2019-10-06 00:00:00'::TIMESTAMP,
 '2019-10-07 00:00:00'::TIMESTAMP, '10 minutes') t(time)
JOIN iot.alhex_reading r
 ON (r.device_id = '26170b53-ae8f-464e-8ca6-2faeff8a4d01'::UUID
 AND r.read_at >= t.time
 AND r.read_at < (t.time + '10 minutes'))
GROUP BY 1, 2
ORDER BY t.time;

http://intrbiz.comchris@intrbiz.com

Processing Data - Window Functions

http://intrbiz.comchris@intrbiz.com

Processing Data - Counters

SELECT
 day,
 energy,
 energy - coalesce(lag(energy)
 OVER (ORDER BY day), 0) AS consumed
FROM iot.meter_reading
ORDER BY day;

http://intrbiz.comchris@intrbiz.com

Processing Data - Rolling Along

WITH consumption AS (
 … from previous slide …

)
SELECT *, sum(consumed) OVER
 (PARTITION BY date_trunc('week', day))
 AS weekly_total
FROM consumption;

http://intrbiz.comchris@intrbiz.com

Processing Data - Moving On Up

SELECT *, avg(consumed) OVER
 (ORDER BY day
 ROWS BETWEEN 2 PRECEDING
 AND CURRENT ROW)
 AS weekly_total
FROM consumption;

http://intrbiz.comchris@intrbiz.com

Processing Data - Mind The Gap!

http://intrbiz.comchris@intrbiz.com

Processing Data - Mind The Gap
WITH days AS (
 SELECT t.day::DATE
 FROM generate_series('2017-01-01'::DATE, '2017-01-15'::DATE, '1 day') t(day)
), data AS (

SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE AND day <= '2017-01-15'::DATE

)
SELECT day, coalesce(energy_import_wh, (((next_read - last_read) / (next_read_time - last_read_time)) * (day -
last_read_time)) + last_read) AS energy_import_wh_interpolated
FROM (
 SELECT t.day, d.energy_import_wh,

last(d.day) OVER lookback AS last_read_time,
last(d.day) OVER lookforward AS next_read_time,
last(d.energy_import_wh) OVER lookback AS last_read,
last(d.energy_import_wh) OVER lookforward AS next_read

 FROM days t
 LEFT JOIN data d ON (t.day = d.day)
 WINDOW

lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)

) q ORDER BY q.day

http://intrbiz.comchris@intrbiz.com

Processing Data - Mind The Gap

CREATE FUNCTION last_agg(anyelement, anyelement)
RETURNS anyelement LANGUAGE SQL IMMUTABLE STRICT AS $$
 SELECT $2;
$$;

CREATE AGGREGATE last (
 sfunc = last_agg,
 basetype = anyelement,
 stype = anyelement
);

http://intrbiz.comchris@intrbiz.com

Processing Data - Mind The Gap

WITH days AS (
 SELECT t.day::DATE
 FROM generate_series('2017-01-01'::DATE,
'2017-01-15'::DATE, '1 day') t(day)
), data AS (

SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE

 AND day <= '2017-01-15'::DATE
)

http://intrbiz.comchris@intrbiz.com

Processing Data - Mind The Gap

 SELECT t.day, d.energy,
last(d.day) OVER lookback AS last_read_time,
last(d.day) OVER lookforward AS next_read_time,
last(d.energy) OVER lookback AS last_read,
last(d.energy) OVER lookforward AS next_read

 FROM days t
 LEFT JOIN data d ON (t.day = d.day)
 WINDOW

lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)

http://intrbiz.comchris@intrbiz.com

Processing Data - Mind The Gap

SELECT day,
 coalesce(energy,
 (((next_read - last_read)
 / (next_read_time - last_read_time))
 * (day - last_read_time))
 + last_read) AS energy_interpolated
FROM (
 … from previous slide …
) q
ORDER BY day

http://intrbiz.comchris@intrbiz.com

Extensions - TimescaleDB

● TimescaleDB is a PostgreSQL extension for time series data
○ Open Source and Commercial licences

● You can do time series data in PostgreSQL without it
○ Nothing I’ve covered so far needs TimescaleDB

● But TimescaleDB does offer some pretty cool features and is worth having a
look at:

○ Benchmarks - 5.4x faster 10% resources compared with Cassandra
○ Hypertables (partitioning), supports 2d partitioning
○ Some very handy functions for dealing with time series data
○ Continuous Views - Build materialised roll up aggregates in real time

http://intrbiz.comchris@intrbiz.com

So Long And Thanks For All The Fish

● Thanks for listening
○ I hope I didn’t bore you too much

● Questions?

